Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 146: 106097, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678107

RESUMO

OBJECTIVE: Mandibular reconstruction using patient-specific cage implants is a promising alternative to the vascularized free flap reconstruction for nonirradiated patients with adequate soft tissues, or for patients whose clinical condition is not conducive to microsurgical reconstruction. This study aimed to assess the biomechanical performance of 3D printed patient-specific cage implants designed with a semi-automated workflow in a combined cadaveric and retrospective case series study. METHODS: We designed cage implants for two human cadaveric mandibles using our previously developed design workflow. The biomechanical performance of the implants was assessed with the finite element analysis (FEA) and quasi-static biomechanical testing. Digital image correlation (DIC) was used to measure the full-field strains and validate the FE models by comparing the distribution of maximum principal strains within the bone. The retrospective study of a case series involved three patients, each of whom was treated with a cage implant of similar design. The biomechanical performance of these implants was evaluated using the experimentally validated FEA under the scenarios of both mandibular union and nonunion. RESULTS: No implant or screw failure was observed prior to contralateral bone fracture during the quasi-static testing of both cadaveric mandibles. The FEA and DIC strain contour plots indicated a strong linear correlation (r = 0.92) and a low standard error (SE=29.32µÎµ), with computational models yielding higher strain values by a factor of 2.7. The overall stresses acting on the case series' implants stayed well below the yield strength of additively manufactured (AM) commercially pure titanium, when simulated under highly strenuous chewing conditions. Simulating a full union between the graft and remnant mandible yielded a substantial reduction (72.7±1.5%) in local peak stresses within the implants as compared to a non-bonded graft. CONCLUSIONS: This study shows the suitability of the developed semi-automated workflow in designing patient-specific cage implants with satisfactory mechanical functioning under demanding chewing conditions. The proposed workflow can aid clinical engineers in creating reconstruction systems and streamlining pre-surgical planning. Nevertheless, more research is still needed to evaluate the osteogenic potential of bone graft insertions.


Assuntos
Parafusos Ósseos , Mandíbula , Humanos , Estudos Retrospectivos , Fluxo de Trabalho , Mandíbula/cirurgia , Cadáver
2.
J Mech Behav Biomed Mater ; 132: 105291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660552

RESUMO

The reconstruction of large mandibular defects with optimal aesthetic and functional outcomes remains a major challenge for maxillofacial surgeons. The aim of this study was to design patient-specific mandibular reconstruction implants through a semi-automated digital workflow and to assess the effects of topology optimization on the biomechanical performance of the designed implants. By using the proposed workflow, a fully porous implant (LA-implant) and a topology-optimized implant (TO-implant) both made of Ti-6Al-4V ELI were designed and additively manufactured using selective laser melting. The mechanical performance of the implants was predicted by performing finite element analysis (FEA) and was experimentally assessed by conducting quasi-static and cyclic biomechanical tests. Digital image correlation (DIC) was used to validate the FE model by comparing the principal strains predicted by the FEM model with the measured distribution of the same type of strain. The numerical predictions were in good agreement with the DIC measurements and the predicted locations of specimen failure matched the actual ones. No statistically significant differences (p < 0.05) in the mean stiffness, mean ultimate load, or mean ultimate displacement were detected between the LA- and TO-implant groups. No implant failures were observed during quasi-static or cyclic testing under masticatory loads that were substantially higher (>1000 N) than the average maximum biting force of healthy individuals. Given its relatively lower weight (16.5%), higher porosity (17.4%), and much shorter design time (633.3%), the LA-implant is preferred for clinical application. This study clearly demonstrates the capability of the proposed workflow to develop patient-specific implants with high precision and superior mechanical performance, which will greatly facilitate cost- and time-effective pre-surgical planning and is expected to improve the surgical outcome.


Assuntos
Reconstrução Mandibular , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Titânio , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...